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Function summary

Functions express calculations in programming. 

The definition fields and values correspond to types in 
programming.

In functional languages , functions can be manipulated 
like any values . Functions can be arguments and results 
of functions .

Multi-argument (or tuple) functions can be rewritten as 
single-argument functions that return functions .
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What do we know so far?/ 
What should we know?

We know the properties of functions and how to 
use them: injective, surjective, bijective, 
invertible functions;

To build functions with certain properties;

To count functions defined on finite sets (with 
given properties);

To compose simple functions to solve problems;

To identify the type of a function.

.
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recursion
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Inductively defined sets

Let the set A = {3 , 5 , 7 , 9 , . . . }
We can define it A = { x | x = 2 k + 3 , k ∈ N}

Alternatively 
- 3 ∈ A
- x ∈ A ⇒ x + 2 ∈ A
- an element reaches A only through one of the 

above steps

⇒ we can define inductively the set A
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Inductively defined sets
A = {3 , 5 , 7 , 9 , 11 , 13 , . . . }

3 ∈ A – the basic element : P (0) : a 0 ∈ A

x ∈ A ⇒ x + 2 ∈ A – construction of new elements :
P ( k ) ⇒ P ( k + 1) : a k ∈ A ⇒ a k +1 ∈ A

an element gets into A only through one of the above 
steps – closure (no other element is in the set )

⇒ the inductive definition of A
⇒ we say that A is an inductive set
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Inductively defined sets
An inductive definition of a set S consists from:

• base: the base elements of S (minimum one).

• induction: at least one rule for constructing new 
elements of S from elements already existing in S

• closure : S contains only the elements obtained by 
base and induction steps

The base elements and the rules for constructing 
new elements constitute the constructors of the set.
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Inductively defined sets - example
The set of natural numbers N is an inductive set:

• basis : 0 ∈

• induction : n ∈ N ⇒ n + 1 ∈ N

Constructors of N:

- base 0

- the addition operation by 1
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Inductively defined sets - example

A = {1 , 3 , 7 , 15 , 31 , . . . } is an inductive set :

– base : 1 ∈ A

– induction : x ∈ A ⇒ 2 x + 1 ∈ A

• Constructors of A :

– base 1

– The operation of multiplying by 2 and adding by 1
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Towers of Hanoi
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Towers of Hanoi

12

The aim of the game is to move the whole stack 
from one rod to another , respecting the 
following rules:

– Only one disk can be moved at a time.

– Each move consists of taking the topmost disc on 
a rod and sliding it onto another rod, even over 
other discs already on that rod.

– A larger disc cannot be positioned on top to a 
smaller disc.



Towers of Hanoi
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We need to find the minimum number of moves 
of the entire stack from one rod to another, 
based on the initial number of disks

p(n)

p(1) = 1

p(2) = 3

P(3) = 7

Can we find a general rule?



Towers of Hanoi
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Towers of Hanoi
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| | 4
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Towers of Hanoi
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Step 1 – move n-1 disks
Step 2 – move the largest disk (1 disk)
Step 3 – move n-1 disks

p(n) = p(n-1) + 1 + p(n-1)
p(n) = 2 * p(n-1) + 1

p(n)=2𝑛 − 1
(We can demonstrate through mathematical 
induction) 



The problem of the number of 
teachers

At the faculty, we have a challenge with the number of 
teaching staff. We need more teachers because the 
number of students keeps increasing.

We have a rule that leads to an increase in the number of 
teachers:

– Every year, a teacher must bring/train a new teacher

– The only exception is the first year for each teacher, the 
year in which they do not have to bring/train a teacher

How many teachers will the faculty have after 8 years if 
we apply these rules and, to simplify the calculation, in 
year 1 we start with 1 teacher?
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The problem of the number of 
teachers

We define the function:
f(n) = #number of teachers after year n

f(0) = 0
f(1) = 1
f(2) = ? ... 1
f(3) = ? ... 2
f(4) = ? ... 3
f(5) = ? ... 5
f(6) = ? ... 8
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The problem of the number of 
teachers

Year 1: 1 teacher

Year 2: 1 teacher - only last year's teacher

Year 3: 2 teachers – the one from last year + 1 new

Year 4: 3 teachers – the 2 from last year + 1 new

Year 5: 5 teachers – the 3 from last year + 2 new ones

Year 6: 8 teachers – the 5 from last year + 5 new ones

Year 7: 13 teachers – the 8 from last year + 5 new ones

Year 8: 21 teachers – the 13 from last year + 8 new ones
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The problem of the number of 
teachers

f(n) = #number of teachers after year n

• f(n+1) = f(n) + f(n-1)
Last year's teachers new teachers

Do you recognize this recurrence?

It's the way to build the famous

Fibonacci string
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The problem of the number of 
teachers

The Fibonacci sequence is the first recurrence known to have 
been studied mathematically, of all the recurrences studied

It was first published in the journal "Liber abaci" by Leonardo 
Fibonacci from Pisa in 1202 . This treatise contained all that 
was known about mathematics at the time and influenced the 
development of mathematics for years to come

He studied a real problem of those times, the growth of the 
rabbit population, which he expressed as follows:
- each month, a pair of rabbits will give birth to an average of 
2 more rabbits, except for the first month of life
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The Fibonacci sequence

We reduce the problem of the number of teachers 
mathematically to solving the equation :

f(n+1) = f(n) + f(n-1), n≥2 with f(0) = 0 and f(1) = 1

We assume that the string has the form
f(n+1) =λ𝑛+1, 𝑤ℎ𝑒𝑟𝑒 λ 𝑖𝑠 𝑎 𝑓𝑙𝑜𝑎𝑡

The equation becomes:
λ𝑛+1= λ𝑛+λ𝑛−1

λ𝑛+1- λ𝑛- λ𝑛−1= 0

ቊ
λ𝑛−1(λ2− λ1−1) = 0
f(n) ≠ 0, ( ∀ n ∈ 𝑁∗)

⇒ λ2−λ−1 = 0
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The Fibonacci sequence

Equation of degree 2:
λ2− λ1−1 = 0 has the solutions:

λ1 =
1 + 5

2

λ2 =
1 − 5

2
equation λ2− λ1−1 = 0 is called the associated characteristic 
equation, and if it has 2 distinct solutions, then the general 
solution of the equation from which we started is:

f(n+1) =𝑐1
1+ 5

2

𝑛+1

+ 𝑐2
1− 5

2

𝑛+1
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The Fibonacci sequence

We also know that f(0)= 0 and f(1) = 1

f(0) = 𝑐1
1 + 5

2

0

+ 𝑐2
1 − 5

2

0

= 𝑐1 + 𝑐0 = 0

f(1)=𝑐1
1 + 5

2
+ 𝑐2

1 − 5

2
= 1

With the solutions: 𝑐1= 
1

5
and 𝑐2=−

1

5
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The Fibonacci sequence

Finally, we proved above that the n term of the 
Fibonacci sequence has the form:

f(n) =
1

5

1+ 5

2

𝑛

−
1

5

1− 5

2

𝑛

This is not something easy to calculate, it took 
Europeans 6 centuries to find this solution.
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The Fibonacci sequence

The truth is that Fibonacci did not discover this string, he 
only told Europeans about it , being used around 200 by 
Indian mathematicians and having applications in 
grammar and music

Kepler used it in the 16th century to study how the leaves 
of a flower are arranged on the stem , what is the 
number of leaves on each level

Mathematician Abraham de Moivre was the one who 
discovered Binet's formula , in the 17th century, the 
formula on the previous slide

26



The Fibonacci sequence

Binet's formula connects the terms of the Fibonacci 
sequence and the power of the golden number ( 
golden ratio or golden section), the first irrational 
number discovered and defined in history

φ = 
1+ 5

2
= 1.618033 ...

Euclid defined it first

times using the ratio:
𝑎 + 𝑏

𝑎
=
𝑎

𝑏
= φ

27https://ro.wikipedia.org/wiki/Sec%C8%9Biunea_de_aur#/media/Fi%C8%99ier:Numarul_de_aur.jpg



Linear recurrence

Definition: A recurrence is linear if it has the form

f(n) = 𝑎1f(n-1) + 𝑎2f(n-2) + ... 𝑎𝑑f(n-d) = 
σ𝑖=1
𝑑 𝑎𝑖f(n−i), with fixed numbers 𝑎𝑖 and d

d is called the order of recurrence

What order does the Fibonacci sequence 
recurrence?
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recursion
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Recursion in computer science

A notion is recursive if it is used in its own 
definition.

Recursion is fundamental in computer science:
– if a problem has a solution , it can be solved 

recursively
– reducing the problem to a simpler case of the same 

problem

By understanding recursion, we can solve any 
feasible problem
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Recursion: examples

Recursion reduces a problem to a simpler case 
of the same problem

a string is ቊ
an element

an element followed by a string

a road is ቊ
a step

a road followed by a step
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Recurring strings

Arithmetic progression: 

ቊ
𝑥0= b ( 𝑥𝑛= b if n = 0)

𝑥𝑛= 𝑥𝑛−1+ r if n > 0

Example: 1 , 4 , 7 , 10 , 13 , . . . ( b = 1, r = 3 )

Geometric progression:

ቊ
𝑥0= b ( 𝑥𝑛= b if n = 0)

𝑥𝑛= 𝑥𝑛−1∗ r if n > 0

Example: 3 , 6 , 12 , 24 , 48 , . . . ( b = 3, r = 2 )

The definitions above do not compute xn directly, but from 
close to close, depending on xn −1
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The elements of a recursive definition

1. The base case is the simplest case for the given 
definition, defined directly ( the initial term in a 
recurring string: 𝑥0)

The base case must not be missing

2. Recurrence relation - defines the notion, using a 
simpler case of the same notion

3. Proof of stopping recursion after a finite number 
of steps
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Recursive functions

A function is recursive if it appears in its own 
definition.

A function f is defined recursively if it exists at 
least one value f (x) defined in terms of another 
value f (y), where x ≠ y.
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Recursive functions over inductive sets

Many recursive functions have as domain an 
inductive set 

If S is an inductive set, we can use its constructors to 
define a recursive function f with domain S:base 

– base : for each basic element x € S we specify a value 
f(x)

– Induction : we give one or more rules that for any x € 
S, inductively defined x, that define f(x) in terms of 
some other previously defined values of f
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Recursive functions in PYTHON

The generic form of a recursive function:

def recursive_function ():

...

recursive_function()

...

recursive_function()
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Recursive functions in PYTHON

Example:
def frec ():

x=7
frec ()

frec()

- At each call of the function f, new, distinct memory 
space is allocated for x 

- In the above example it is wrong that the stop 
execution condition does not appear
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Recursive functions in PYTHON
Example: Display on the screen in descending order all natural 
numbers less than n.

def count (n ):
print (n)
if ( n > 0 ):

count (n - 1 )
count (3)
-------------------------------------------------- --------------------------
OUTPUTS :
3
2
1
0
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Recursive functions in PYTHON

Example: Factorial function

n! = n x (n−1) x (n−2) x (n−3) ⋅⋅⋅⋅ x 3 x 2 x 1

We can rewrite it recursively:

n! = n x (n−1)!
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Recursive functions in PYTHON

We detail how the factorial function is calculated 
recursively:

n! = n x (n−1)!
n! = n x (n−1) x (n−2)!
n! = n x (n−1) x (n−2) x (n−3)!
⋅
⋅
n! = n x (n−1) x (n−2) x (n−3) ⋅⋅⋅⋅ x 3!
n! = n x (n−1) x (n−2) x (n−3) ⋅⋅⋅⋅ x 3 x 2!
n! = n x (n−1) x (n−2) x (n−3) ⋅⋅⋅⋅ x 3 x 2 x 1!
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Recursive functions in PYTHON

Mathematically, the recursive form of the 
factorial function is:

n! =ቊ
1, 𝑖𝑓 𝑛 = 1

𝑛 ∗ 𝑛 − 1 !, 𝑖𝑓 𝑛 > 1
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Recursive functions in PYTHON

In PYTHON we can write the factorial function like this:

def factorial (x):
if(x ==1):

return 1
else:

return x * factorial (x-1)

print(factorial(4))
-------------------------------------------------- --------------------------
OUTPUTS:
24
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Recursive functions in PYTHON

43Image : https://files.realpython.com/media/stack.9c4ba62929cf.gif



Recursive functions in PYTHON

44https://files.realpython.com/media/jsturtz-factorial-example.496c01139673.png

The steps the program takes to calculate:



Recursive functions in PYTHON

• How the factorial recursive function works:
factorial (4) will execute the following steps:

factorial(4) = factorial(3) * 4 – the function remains in execution
factorial(3) = factorial(2) * 3 – the function remains in execution
factorial(2) = factorial(1) * 2 – the function remains in execution
factorial(1) = 1
factorial(2) = factorial(1) * 2 = 1 * 2 = 2
factorial(3 ) = factorial(2) * 3 = 2 * 3 = 6
factorial(4) = factorial(3) * 4 = 6 * 4 = 24
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An unsolved problem : "problem 3 · n + 1" 

Collatz conjecture(1937 ),
Let be a positive number n:

– if it is even, we divide it by 2: n/ 2
– if it is odd, we multiply it by 3 and add 1: 3 · n + 1

Is 1 reached from any positive number?
(unsolved problem in math...)

f(n)=ቊ
n/2, 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

3 · n + 1, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑
Examples:
3 →10→5→16→8→4→2→ 1
11→34→17→52→26→13→40→20→10→5→16→8→4→
2→ 1
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An unsolved problem : "problem 3 · n + 1" 

How many steps does it take to get to #1?
• We define the function p : N∗ → N that counts the 

steps until stopping:
– for 3→ 10→5→16→8→4→2→1 we have 7 steps

• We do not have a formula with which to calculate p(n) 
directly.

• But if the string n , f ( n ), f ( f ( n )) , . . . reaches 1, then 
the number of steps taken from n is one more than 
continuing from f ( n )

• 𝑝 𝑛 = ቊ
0, 𝑖𝑓 𝑛 = 1

1 + 𝑝(𝑓 𝑛 ), 𝑖𝑓 𝑛 > 1

• The function p is used in its own definition , so it was 
defined recursively .
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An unsolved problem : "problem 3 · n + 1" 

How many steps does it take to get to #1?
• We define the function p : N∗ → N that counts the 

steps until stopping:
– for 3→ 10→5→16→8→4→2→1 we have 7 steps

• We do not have a formula with which to calculate p(n) 
directly.

• But if the string n , f ( n ), f ( f ( n )) , . . . reaches 1, then 
the number of steps taken from n is one more than 
continuing from f ( n )

• 𝑝 𝑛 = ቊ
0, 𝑖𝑓 𝑛 = 1

1 + 𝑝(𝑓 𝑛 ), 𝑖𝑓 𝑛 > 1

• The function p is used in its own definition, so it is 
recursively defined.
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An unsolved problem : "problem 3 · n + 1" 

def next(n):
if (n%2 == 0):

return n/2
else :

return 3 * n + 1

def steps (n):
if (n == 1):

return 0
else :

return 1 + steps ( next (n))
49



Fibonacci string in PYTHON

def fibonacci (n):
if (n ==0):

return 0
elif (n==1):

return 1
else:

return fibonacci (n-1) + fibonacci (n-2)

print( fibonacci (7))
-------------------------------------------------- ----------------------
OUTPUT: 21

50



Inductively defined sets

Recursion

Recursive functions in PYTHON

Pattern matching

Tail recursion

Advantages and disadvantages of 
recursion

51



Pattern matching

We can also write the function this way, using pattern 
matching:

def fibonacci(n):
match n:

case 0:
return 1

case 1:
return 1

case _:
return fibonacci(n-1) + fibonacci(n-2)

52



Pattern matching

We can write the last condition in these ways, they are 
equivalent:

case _:
return fibonacci(n-1) + fibonacci(n-2)

--------------------------------------------------------------------- or
case other:

return fibonacci(n-1) + fibonacci(n-2)
---------------------------------------------------------------------- or

case n:
return fibonacci(n-1) + fibonacci(n-2)
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Pattern matching

How match case is executed :

It is checked, one by one, from the first case to 
the last, if the value matches.

- if it doesn't match, go to the next case

- if it matches, the instruction from the respective case is 
executed, and the rest of the cases are no longer checked
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Pattern matching
Example : To display if a point is on the axes :

def points (x, y):
match (x, y):

case (0, 0):
print(“The point is at origin")

case (0, _):
print("The point is on the Ox axis")

case (_, 0):
print(“The point is on the Oy axis")

case (_, _):
print("The point is not on any axis")

puncte(0,3) #The point is on the Ox axis
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Limitation in PYTHON

One of the disadvantages of recursion is that each 
function call that remains in execution uses memory 
space on the stack

PYTHON by default limits the number of calls of the same 
expression to 1000 (10**3) times
The error that occurs when calling the same expression 
more than 1000 times generates the error: maximum 
recursion depth exceeded error

In problems where we need more than 1000 iterations 
we can change this limit using the setrecursionlimit () 
function from the sys module
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Limitation in PYTHON

To increase the limit from a maximum of 1,000 
calls to a maximum of 100,000 calls :

import sys

sys.setrecursionlimit (10 **5 )
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Tail recursion

Factorial, tail recursion :

def fact(n, a=1):

if (n <= 1):

return a

else:

return fact(n - 1, n * a)

print(factorial(4))

59

Factorial, classical 
recursion :
def factorial (x):

if(x ==1):
return 1

else:
return x * factorial (x-1)

print(factorial(4))



Tail recursion

• How the factorial recursive function works:
factorial (4) will execute the following steps:

factorial(4, 1) = factorial(3, 4 * 1)
factorial(3, 4) = factorial(2, 3 * 4)
factorial(2, 12) = factorial(1, 12 * 2)
factorial(1, 24) = 24
factorial(2, 12) = 24
factorial(3, 4) = 24
factorial(4, 1) = 24
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Example of using if - else

PYTHON also allows a more compact writing of the if-else 
statement like this:

def factorial (x):

return 1 if (x ==1) else x * factorial (x-1)

print(factorial(4))

-------------------------------------------------- --------------------------

OUTPUTS:

24
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Advantages of recursion in 
programming

• The code is more short and easy to follow, 
elegant, clean

• Complex problems can be broken down into 
simpler subproblems and thus easier to solve

• Generating strings is done more simply 
recursively
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Disadvantages of recursion in programming

• It is harder to follow step by step the logic 
behind a code written recursively

• Repeated recursive calls use a lot of memory

• Errors that occur in recursive functions are 
more difficult to correct
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To know

To recognize and define recursive notions

To recognize if a recursive definition is correct

- has the base case? does recursion stop?

To solve problems by writing recursive functions

- the base case + the reduction step to a 
simpler problem
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Thank you!
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